Содержание курса лекцийПерсоналииЗаконодательствоМатематикаМатериалыПоискБиблиотекаПомощьДалее

Электротехника и электроника

2. Полупроводниковые диоды: 2.3. Виды и система обозначений современных полупроводниковых диодов.

2.3.1. Виды и обозначение диодов

В зависимости от свойств и поведения ВАХ различают следующие виды диодов.

1) Выпрямительные диоды различных классов, отличающиеся напряжением, временем переключения, рабочей полосой частот. ВАХ как у обычного p-n-перехода. Обозначение стандартное (см. таблицу 2.1). В качестве выпрямительных используют сплавные эпитаксиальные и диффузионные диоды, выполненные на основе несимметричных p-n-переходов. Для выпрямительных диодов характерны малые сопротивления и большие токи в прямом режиме. Барьерная емкость из-за большой площади перехода достигает значений десятков пикофарад. Германиевые выпрямительные диоды применяют до температур 70-80оС, кремниевые до 120-150оС, арсенид-галлиевые до 150оС.

Основные параметры выпрямительных диодов:

Uобр,макс –максимально допустимое обратное напряжение, которое диод может выдержать без нарушения его работоспособности;

Iвып,ср - средний выпрямленный ток;

Iпр,п – пиковое значение импульса тока при заданных максимальной длительности, скважности и формы импульса;

Uпр,ср – среднее прямое напряжение диода при заданном среднем значении прямого тока;

Pср – средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях;

rдиф – дифференциальное сопротивление диода в прямом режиме.

Особо отметим класс импульсных диодов, имеющих очень малую длительность переходных процессов из-за малых емкостей переходов (доли пикофарад); уменьшение емкостей достигается за счет уменьшения площади p-n-перехода, поэтому допустимые мощности рассеяния у них меньше, чем у низкочастотных выпрямительных диодов. Их используют в импульсных схемах.

К параметрам, перечисленным выше, для импульсных диодов следует отнести общую емкость СД, максимальные импульсные прямые и обратные напряжения и токи, время установления прямого напряжения от момента подачи импульса прямого тока до достижения им заданного значения прямого напряжения и время восстановления обратного сопротивления диода с момента прохождения тока через нуль до момента, когда обратный ток достигает заданного малого значения (см. рис. 2.13).

Рис. 2.13

После изменения полярности напряжения в течение времени t1 обратный ток меняется мало, он ограничен только внешним сопротивлением цепи. При этом заряд неосновных носителей, накопленных в базе диода, рассасывается. Далее ток уменьшается до своего статического значения при полном рассасывании заряда в базе.

2) Стабилитроны – диоды, предназначенные для работы в режиме электрического пробоя. Условное обозначение отличается от стандартного (см. таблицу 2.1). В этом режиме при значительном изменении тока стабилитрона напряжение на нем меняется мало. В низковольтных (до 5,7В) стабилитронах используется туннельный пробой, а в высоковольтных – лавинный пробой. В них более высокоомная база.

Основные параметры:

Uст – напряжение стабилизации при заданном токе в режиме пробоя;

Iст,мин и Iст,макс – минимально допустимый и максимально допустимый токи стабилизации;

rст – дифференциальное сопротивление стабилитрона на участке пробоя;

- температурный коэффициент напряжения (ТКН) стабилизации при заданном токе стабилизации. Туннельный пробой характеризуется отрицательным ТКН, а лавинный - положительным.

Для стабилизации малых напряжений (0,3…1,9В) используют диоды, называемые стабисторами, которые работают в прямом режиме, имеют специальную форму прямой ветви. Обозначение такое же, как у выпрямительных диодов.

3) Диод Шотки – разновидность выпрямительных диодов, работающий на основе выпрямляющего контакта металл – полупроводник, образующего контактную разность потенциалов из-за перехода части электронов из полупроводника n -типа в металл и уменьшения концентрации электронов в полупроводниковой части контакта. Эта область обладает повышенным сопротивлением. При подключении внешнего источника плюсом к металлу, а минусом к полупроводнику, потенциальный барьер понизится и через переход пойдет прямой ток.

В диоде Шотки отсутствуют явления накопления и рассасывания основных носителей, поэтому они очень быстродействующие и могут работать на частотах до десятков ГГц. Прямое напряжение составляет ~0,5 В, прямой допустимый ток может достигать сотни ампер, а обратное напряжение – сотен вольт. ВАХ диода Шотки напоминает характеристику обычных p-n-переходов, отличие состоит в том, что прямая ветвь в пределах 8-10 декад напряжения представляет почти идеальную экспоненциальную кривую, а обратные токи достаточно малы – 10-10…10-9 А.

Конструктивно диоды Шотки выполняют в виде пластины из низкоомного кремния, на которую нанесена высокоомная эпитаксиальная пленка с электропроводностью того же типа. На поверхность пленки вакуумным напылением нанесен слой металла.

Диоды Шотки применяют в переключательных схемах, а также в выпрямителях больших токов и в логарифмирующих устройствах, из-за соответствующей вида его ВАХ.

4) Варикап – полупроводниковый диод, предназначенный для работы в качестве емкости, величина которой зависит от приложенного к нему напряжения. Основная его характеристика – вольт-фарадная С( U ) (см.таблицу 2.1).

Варикап работает как правило при обратном напряжении, при изменении которого изменяется в широких пределах барьерная емкость диода, причем

где С(0) – емкость при нулевом напряжении на диоде; - контактный потенциал; n =2 для резких и n =3 для плавных p-n-переходов.

Основные параметры варикапа:

С – емкость, измеренная между выводами при заданном обратном напряжении;

- коэффициент перекрытия по емкости;

rП – суммарное активное сопротивление диода;

- добротность, определяемая при заданном значении емкости.

5) Туннельный диод – полупроводниковый диод с падающим участком на прямой ветви ВАХ, обусловленный туннельным эффектом. Обозначение и ВАХ даны в таблице 2.1. Падающий участок характеризуется отрицательным дифференциальным сопротивлением.

В зависимости от функционального назначения туннельные диоды условно подразделяются на усилительные, генераторные и переключательные.

Основные параметры:

IП и UП – пиковые ток и напряжение начала падающего участка;

IВ и UВ – ток и напряжение впадины (конца падающего участка);

- отношение тока впадины к пиковому току;

UР – диапазон напряжений падающего участка ( раствор).

LД – полная последовательная индуктивность диода при заданных условиях (см. рис.2.14, представляющий схему замещения диода на падающем участке ВАХ для малых изменений тока и напряжения на диоде).

Рис. 2.14

f0 – резонансная частота, при которой общее реактивное сопротивление p-n-перехода и индуктивности корпуса обращается в нуль;

fR - предельная резистивная частота, при которой активная составляющая полного сопротивления последовательной цепи, состоящей из p-n-перехода и сопротивлений потерь, обращается в нуль;

КШ – шумовая постоянная туннельного диода, определяющая коэффициент шума диода;

rП – сопротивление потерь, включающее сопротивление кристалла, контактных соединений и выводов.

Разновидностью туннельного диода является обращенный диод. Это полупроводниковый диод, физические явления в котором подобны физическим явлениям в туннельном диоде. Его рассматривают иногда как вариант туннельного диода. Здесь участок с отрицательным сопротивлением выражен более слабо, чем у туннельного, а иногда даже отсутствует. Обозначение и ВАХ даны в таблице. Обратная ветвь обращенного диода используется как прямая ветвь обычного диода.

Таблица 2.1

Тип диода Условное обозначение Характеристика
Выпрямительный
Диод Шотки
Стабилитрон
Стабистор
Варикап
Туннельный диод
Обращенный диод
Содержание курса лекцийДалее
Hosted by uCoz